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In conventional ANC (Active Noise Control), the cancellation path is usually modelled
by a FIR filter with many coefficients. In this study, a Delayed-X LMS algorithm is
investigated of which the computational load is much less than that of the Filtered-X LMS
method for a long duct or narrow band noise cancellation application. This algorithm is
based on the hypothesis that the cancellation path model for the Filtered-X LMS method
does not have to be accurate and can be represented by a delay in such cases. The steady
state weight vector solution in the presence of model error is investigated to show the
validity of using an erroneous simplification. The ADE (Adaptive Delay Estimation)
method is proposed for effective delay estimation of the cancellation path, which can be
used with the Delayed-X LMS algorithm on-line or off-line. Simulation and experimental
results demonstrate the effectiveness of the Delayed-X LMS algorithm for the specified
applications.
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1. INTRODUCTION

The Filtered-X LMS algorithm [1–3] has been widely investigated and applied as a
feed-forward control scheme for ANC (Active Noise Control) systems having an auxiliary
path between the control output and the error sensor. When using the Filtered-X LMS,
the cancellation path is usually modelled by a FIR filter that has tens of or even hundreds
of coefficients in it; filtering the reference signal through the estimated cancellation path
model is a heavy burden to real-time controllers. Especially for the MIMO version of
Filtered-X LMS, such a computational burden is directly related to the increment of
hardware cost.

It must be noted that the approximated cancellation path model can be used without
much deterioration in performance. This is the main reason why the cancellation path
model obtained off-line, and therefore usually not accurate in a changing environment, can
be successfully used in practice. Only if the phase difference between the true cancellation
path and the cancellation path model is less than 90° can the stable convergence of the
Filtered-X LMS algorithm be guaranteed [4, 5] even though the equilibrium may be
different.

In this paper, a Delayed-X LMS algorithm is investigated, in which the cancellation path
model is intentionally simplified with only two parameters; delay and gain. Hence, one is
considering the case when the cancellation path model is erroneous. It can be viewed as
a simplified version of the Filtered-X LMS algorithm utilizing its robustness to the error
in the cancellation path’s model. Fortunately, such an approximation ensures convergence,
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which will be discussed in section 2 for the two applications: ANC for a long duct, and
ANC for a narrow band noise. Moreover, it hardly alters the converging value from the
optimal as will be seen in section 3 via an analytical investigation and numerical
verification. Convergence and performance of the proposed algorithm are discussed for
two special applications.

An ADE (Adaptive Delay Estimation) method is proposed, which estimates the delay
and gain of the cancellation path model adaptively for the Delayed-X LMS algorithm. This
can be used off-line or on-line with small additional computations. Simulation and
experimental results show the effectiveness of the proposed method.

A typical block diagram of a single input single output ANC system, which will be
considered from now on, is shown in Figure 1. The transfer function P(z), designating the
‘‘plant’’, represents an acoustic system consisting of the system from the reference sensor
output to the error microphone output. The ‘‘cancellation path’’ H(z) represents the
dynamics from the control output to the error microphone output and C(z) is its model.
The reference noise source signal x(k) is measured and filtered through an adaptive filter
W(z) in the controller, and drives a control source to cancel the noise. Residual noise e(k)
is detected by the error microphone, and is used in the adaptive algorithm (usually
LMS-type) to optimize the control performance by minimizing the residual noise itself.

2. DELAYED-X LMS ALGORITHM

2.1.  

In feed-forward active noise control when using an FIR-type adaptive filter, the control
ouptut y(k) is

y(k)=WT(k)X(k), (1)

where W(k)= [w0(k)w1(k) · · · wL (k)]T is a column vector of length L+1, whose elements
are weights of the adaptive filter W(z) and X(k)= [x(k)x(k−1) · · · x(k−L)]T is a column
vector of length L+1 formed by the subsequent reference input signal x(k). The
Delayed-X LMS algorithm can be considered as a special type of the Filtered-X LMS in
which gz−D is used as a cancellation path model:

C(z)= gz−D. (2)

Here g and D represent the gain and delay of the model, respectively. The main reason
for using the simplified model gz−D is its computational benefit. The updated form of the
Delayed-X LMS algorithm becomes much simpler than that of Filtered-X LMS,

W(k+1)=W(k)+2he(k)gX(k−D). (3)

Figure 1. Block diagram of typical ANC system.
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In this updated form, the filtered reference signal is replaced by gX(k−D), no convolution
is needed and only accessing delayed data from the memory is necessary. Redefining a new
convergence parameter m that is equal to hg, one can obtain an alternative and simpler
update form:

W(k+1)=W(k)+2me(k)X(k−D). (4)

Now, the gain g is not an essential parameter any more; rather the delay D and m are the
important parameters.

2.2.     — 

The existence of stable bounds for various delays in the Delayed-X LMS algorithm will
be illustrated. The upper stable bound of m, denoted as ms , is directly found from updating
the Delayed-X LMS algorithm by trial and error in the simulation.

For simulation, two tone signals with 200 and 300 Hz (under 2 kHz sampling) and peak
to peak magnitude of unity were used as the reference signal x(k). The weight length W
was 5. The upper stable bound ms is plotted in Figure 2 versus D (D=0, 1, 2, . . . , 10),
which represents the delay of the cancellation path model. The plant is set as
P(z)=0·3z−6 + z−7 +2z−8 + z−9 +0·1z−10, and the following three cases of H (the vector
formed by impulse response of H(z)) are considered:

H= 8[0 1 2 3 4 5 4 3 2 1 0]T,
[0 1 2 3 4 0 −4 −3 −2 −1 0]T,
[0 1 2 3 4 3 2 1 0 −1 0]T,

Case I
Case II
Case III9.

While H of Case I or II is a linear phase system, that of Case III is not. As shown in Figure
2 there are many simply delay models that ensure convergence for all three cases of H.
The ms for Case I is almost symmetric as is H. The shape of ms for the Cases II and III
have peaks at the same related position of H.

The existence condition of a stable m mainly depends on the phase difference between
H and its model. A non-zero ms implies that the phase error between H and its model is
less than 90° for both 200 and 300 Hz, which is easy to prove analytically from the previous
H and its simplified model. This was confirmed for the three cases of H. Also, one could
observe that there are many possible delay models that can show stable convergence for
the three cases considered.

Figure 2. Upper stable bound ms versus D for three cases of H(z) when reference is a two-tone signal (200
and 300 Hz reference under 2 kHz sampling). —————— , Case I; - - - - , Case II; · · · · , Case III.
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3. EFFECTS OF MODEL ERROR OF C AT STEADY STATE

3.1.   

In this section, an investigation is made of how the error in the model of the cancellation
path affects the steady state weight vector W*, and which condition leads W* to its ideal
optimum value W*opt that can be obtained from an error-free C(z). The error surface e(k)2

is of a quadratic form with respect to W and the minimum is independent of C(z ).
However, since its calculation of the gradient is distorted, when C(z) is erroneous, it may
lead W to a steady state W* that is not the global minimum W*opt . At first though one might
conclude that this fact weighs against adopting a simplified cancellation path model. But
the investigation of the steady state solution in detail reveals that error in C(z) does not
degrade the performance in some important cases.

One can rearrange the Filtered-X LMS update equation at steady state as

C�TRH�W*=−C�TRP, (5)

where

C 0

CG
G

G

K

k

G
G

G

L

l

C�= ···
, C=[c0 · · · cM ]T, (6)

0 C
zXXcXXv

(L+M+1)× (L+1)

H 0

HG
G

G

K

k

G
G

G

L

l

H�= ···
, H=[h0 · · · hM ]T, (7)

0 H
zXXcXXv

(L+M+1)× (L+1)

R=E[[x(k) · · · x(k−L−M)]T[x(k) · · · x(k−L−M)]], P=[p0 · · · pL+M ]T. (8, 9)

Here, C, H and P are vectors formed from the coefficients of C(z), H(z) and P(z),
respectively. Letting W0 be the weight’s initial value, one can write W*opt and the steady state
value W* as

W*opt =−(H�TRH�)+H�TRP+[I−(H�TRH�)+(H�TRH�)]W0, (10)

W*=−(C�TRH�)+C�TRP+[I−(C�TRH�)+(C�TRH�)]W0, (11)

where the superscript + denotes the pseudo-inverse.
Equation (11) can be categorized and simplified into three cases according to the

condition of the noise spectra. Suppose the reference x(k) is composed of N distinct
frequency components. The rank of C�TRH� is min {2N, L+1} because the rank of R is
min {2N, L+M+1} and the rank of C� and H� are all L+1. One can categorize the noise
property into three cases: 2N is less than L+1 (under-determined case); 2N is greater than
L+1 (over-determined case); 2N is equal to L+1 (non-singular case). Such a
categorization is based on the fact that each frequency component needs two coefficients
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to be suppressed. One can rewrite equation (11) for the successive three cases as
follows:

W*= (RH�)+RP+[I−(RH�)+(RH�)]W0, under-determined case; (12)

W*=−(C�TRH�)−1C�TRP, over-determined case; (13)

W*=−(RH�)+RP, non-singular case. (14)

For the under-determined case (equation (12)), W* is independent of C(z), but it depends
on the initial weight W0. For the over-determined case (equation (13)), W* depends on
C(z) and is independent of W0, which is the opposite to that of the under-determined case.
For the non-singular case (equation (14)), W* is independent of both C(z) and W0.

The first and second terms, of the right side of equation (12) are orthogonal to each
other and the second term can be controlled by W0. Because the initial weight W0 can be
chosen arbitrarily, there is an infinite number of acceptable W* for the under-determined
case. Among the numerous solutions, the best one will be the one that requires minimum
power, which can be obtained by setting W0 to be the zero vector. One must start to update
the weight after full development of the filtered-x signal to see the effect of W0 without
distortion, because adaptation of W at the initial state could be distorted by the
time-varying filtered-x signal that is not fully developed.

Note that for under-determined and non-singular cases, W* equals W*opt even though C is
different from H. Thus, for narrow band noise suppression, C(z) is a dummy in respect
to the steady state value providing that the length of W is sufficiently long and convergence
is achieved.

3.2.     

The reference input is composed of two pure tones of 200 and 700 Hz with the
same peak to peak magnitude of unity. The plant and cancellation path are chosen
as the FIR filter model as follows: P(z)=0·3z−5 + z−6 +2z−7 + z−8 +0·1z−9,
H(z)=0·2z−4 + z−5 +0·1z−6 for a 2 kHz sampling frequency. Two cases of C(z) are
considered, exact modelling and erroneous modelling, and two cases of W0, zero initial
values and non-zero initial values. Thus, four cases were simulated as follows:

W0 = [0 0 0 · · · ]T W0 = [−0·3 0·3 −0·3 · · · ]T

C(z) (zero initial W0 ) (non-zero initial W0)

C(z)=H(z) (no error in C) Case 1 Case 2
C(z)=H(z)−0·1z−6 (error in C) Case 3 Case 4

Two different weight lengths of 10 and 3 were considered, which represent the
under-determined and over-determined cases, respectively. The Filtered-X LMS algorithm
was adapted until the steady state was reached, and the resultant weight with the W*
obtained from the analytical solution is shown in Figures 3(a) and 4(a). The FRF
(Frequency Response Function) of W* and its target transfer function −P(z)/H(z), are
shown in Figures 3(b) and 4(b). The analytical solutions were identical to the steady state
weights of the Filtered-X LMS within the drawing resolution of the graph. In the
under-determined case, as shown in Figure 3, C(z) could not change the W* (since the
results of Cases 1 and 3 are equal and the results of Cases 2 and 4 are equal), whereas
the effect of W0 remains throughout the adaptation as shown in the FRF. However, at
200 and 700 Hz all the three results ((i) −P/H, (ii) analytical solution, and (iii) steady
state value of Filtered-X LMS) have the same magnitudes and phases. In the
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Figure 3. W* of under-determined case (filter length 10, 200 Hz and 700 Hz noise): (a) W* shape; (b) FRF
of W*. ——, −P/H; – – –, Cases 1 and 3; -----, Cases 2 and 4.

over-determined case, as shown in Figure 4, W0 does not affect the steady solution as the
results of Cases 1 and 2 are equal and the results of Cases 3 and 4 are equal. A different
cancellation path model leads W* to a different shape. Note that the magnitude and phase
at 200 and 700 Hz cannot be matched because of the lack of degree of freedom in the
weight vector W.

4. ESTIMATION OF CANCELLATION PATH MODEL FOR DELAYED-X LMS

4.1.    ()

The cancellation path (a) in a long duct system (each end is well treated with absorbing
material) or (b) for narrow band noise can be approximately modelled as a time delay
system with a gain as in equation (2). The purpose of the ADE method is to adapt the
D required in the Delayed-X LMS algorithm of equation (4). Off-line identification is the
most convenient way to identify the cancellation path’s delay if modelling of H(z) is
available a priori. The maximum absolute peak position of the impulse response of H(z)
is a proper choice for the delay D and the peak value is a proper choice of the gain g.
To get D adaptively in real time, one could identify H(z) with the FIR model and determine
D from the impulse response as one does in off-line. This idea will suffice. However, it is
advantageous to use the ADE algorithm that can directly adapt D to reduce computation
and programming complexity.



–200

200

0

0

–1

0

1

2

1 32

100

P
h

a
se

0

5

10

15
M

a
g

n
it

u
d

e

200 300 400

Hz

500 600 700 800 900 1000

(a)

(b)

ê(k)y(k)
gz ∆–

s(k)

e(k)+–
Σ

ADE
algorithm

   881

Figure 4. W* of over-determined case (filter length 3, 200 Hz and 700 Hz noise): (a) W* shape; (b) FRF of
W*. ——, −P/H; — — —, Cases 1 and 2; ----, Cases 3 and 4.

The control source input y(k) is not orthogonal to e(k) at the initial stage, in general.
One can utilize the information of H(z) left in e(k) at the initial stage of adaptation for
achieving D. Suppose d(k) due to the primary noise source is a disturbing noise (in the
sense of adapting D), and define the cost function as

J(k)= s(k)2, (15)

where

s(k)= e(k)− ê(k)= d(k)+H(z)y(k)− y(k−D(k)). (16)

Figure 5 is schematic diagram of the ADE part. It has an LMS structure where y(k)
is the input and s(k) is the error quantity. Using the steepest descent method to minimize
the cost function one can update g and D as

g(k+1)= g(k)−2mg9g (k), D(k+1)=D(k)−2mD9D (k), (17, 18)

Figure 5. Block diagram of ADE.
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Figure 6. Impulse response of cancellation path of a long duct system (2·5 kHz sampling).

where 9g (k) and 9D (k) are the gradients of s(k)2 with respect to g and D, respectively, and
mg and mD are convergence parameters. From equations (17) and (18), one finds

g(k+1)= g(k)+2mgs(k)y(k−round(D(k))), (19)

D(k+1)=D(k)+2mDs(k)g(k){y(k−round(D(k))+1)− y(k−round(D(k))−1)}.
(20)

The D(k) must be rounded to the nearest integer to be used as a time-step delay. The central
difference method is used to get 9D (k). Of course, either the backward or forward difference
method is possible to get 9D (k).

The error surface s(k)2 with respect to g and D is a function of the noise spectrum of
the excitation signal. Two error surfaces for a 50–400 Hz band signal and for a 300 Hz
single tone signal for the cancellation path H(z) (of Figure 6 obtained from a long duct
system), are shown in Figures 7(a) and (b), respectively. Note that the error surface is
deformed by the stochastic characteristics of the excitation signal. The optimal position
is periodically located for the tonal signal, because any D which is of an integer multiple

Figure 7. Error surfaces of the cancellation path of Figure 6 with simplified model gz−D: (a) for 50–400 Hz
band signal; (b) for 300 Hz pure tone signal.
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Figure 8. Block diagram of Delayed-X LMS with on-line ADE.

of the period minimizes s(k)2. Also note that the gradient is not affected by the gain g,
but the initial guess of D is critical to the convergence to the global minimum. The
following formula is recommended for the initial guess of D:

D= l/(cTs )+D/Ts , (21)

where l is the shortest length of the cancellation path (m), c is the speed of sound (m/s),
D is a combined time delay of electrical parts in the cancellation path (s), and Ts is the
sampling time (s/step).

4.2. -   

ADE can be used with Delayed-X LMS either on-line or off-line. Delayed-X LMS with
on-line ADE gives computational advantage over the conventional on-line methods [6, 7]
by using a simplified model for the cancellation path instead of the full FIR model.
Providing that all the filter lengths are equal, the computational load is 67% of the
conventional method. If on-line ADE is used, the computational load is only 40% of the
conventional on-line cancellation path detection scheme.

Figure 8 is the schematic diagram of Delayed-X LMS with on-line ADE. At each
adaptation step, the weight vector, the estimated gain, and the delay of the cancellation

Figure 9. On-line (· · · ·) and off-line (——) ADE estimation of D.
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Figure 10. Simulation results for a long duct system: (a) Filtered-X LMS; (b) Delayed-X LMS with off-line
ADE; (c) Delayed-X LMS with on-line ADE. · · · · ·, Before ANC; ——, after ANC.

path are updated simultaneously by using equations (4), (19) and (20). A fixed g instead
of g(k) is recommended for filtering the reference signal, because g(k) goes to zero as the
d(k) signal is cancelled by H(z)y(k) and the information of the cancellation path
disappears in e(k). However, the drift of D at steady state can be drastically reduced by
using the g(k) term in its gradient part. One can use a parallel on-line cancellation path
modelling method [7] with a simplified cancellation path and plant models to reduce such
contamination phenomena. Proper adjustment of m, mg , and mD is recommended to ensure
relatively faster convergence of g and D than that of W.

5. COMPUTER SIMULATION AND EXPERIMENTAL RESULTS

5.1.  

The data measured from a real duct system was used to get more realistic results in the
simulation. For a long duct system, a finite duct was used both ends of which were treated
by absorptive material to avoid reflection at the frequency of interest. The data and the
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Figure 11. Experimental result for a long duct system: (a) Filtered-X LMS; (b) Delayed-X LMS with off-line
ADE; (c) Delayed-X LMS with on-line ADE. Key as Figure 10.

Figure 12. Experimental set-up for ANC of narrow band noise in a half scale car cabin.
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Figure 13. Experimental result for a narrow band noise in a half scale car cabin: (a) Filtered-X LMS; (b)
Delayed-X LMS with off-line ADE; (c) Delayed-X LMS with on-line ADE. Key as Figure 10.

cancellation path H(z) for the simulation were obtained from a duct system with a 2500 Hz
sampling rate. By exciting H(z) with a random signal whose frequency range is of
50–400 Hz band, the model of the cancellation path H(z) was obtained by LMS
adaptation with 80 coefficients. Figure 6 shows the cancellation path model obtained from
the experiment. It is assumed to be the actual cancellation path H(z). The plant P(z) was
set to H(z)2 for convenience. Figure 9 is the plot of the off-line and on-line estimation of
D for the given H(z). One can observe that the two curves of round(D) converge to the
global minimum position (round(D)=12) of the error surface in Figure 7(a). A faster
convergence speed is achieved for on-line ADE because the initial magnification of the
signal y(k) followed by a wrong adaptation of W results in the enlargement of the
excitation signal and speeds up the update of the delay.

Figure 10 shows the performance comparison of the three algorithms: (a) the
conventional Filtered-X LMS; (b) Delayed-X LMS with off-line ADE; (c) Delayed-X LMS
with on-line ADE. Each power spectrum was drawn averaging data of 2000E kE 5500.
The noise reduction achieved by the Delayed-X LMS algorithm is not worse than that
achieved by the Filtered-X LMS, though its computational load is reduced significantly.
Delayed-X LMS with on-line ADE takes more time to converge because the initial guess
of D is different from the optimal one. It takes about 500 steps for D to converge, as shown
in Figure 9.
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5.2.  

The feasibility of Delayed-X LMS in the two applications (ANC for a long duct system
and for a narrow band noise) was verified by experiments. For the experiments, a
TMS320c40 DSP board in connection with a notebook computer was used with a 2 kHz
sampling rate.

A circular duct of 15 cm diameter with a control source at a distance of 195 cm from
a primary source, and an error microphone at a distance of 102 cm from the control source
were used. A reference noise whose band is 100–400 Hz was generated by a random signal
generator and was fed to the primary source. FIR filters with a filter length of 84 were
used for W(z) and C(z). Figure 11 shows the steady state power spectrum of the error
microphone signal before and after the real-time control for a long duct system with an
average of 20 data sets.

Figure 12 shows an experimental set-up in which a primary, a control source and an
error microphone were located in a half scale car cabin model. A narrow band noise with
a band width of 31·6 Hz and a center frequency of 150 Hz obtained from the random signal
generator was supplied to the primary source. The adaptive filter W(z) and the cancellation
path model C(z) with a filter length of 32 were used in this case. Figure 13 shows the
experimental results of ANC for this narrow band noise application.

Similar to the simulation results, the experimental results show that the performance of
the Delayed-X LMS with on-line or off-line ADE almost matches that of Filtered-X LMS.

6. CONCLUSIONS

The use of a Delayed-X LMS algorithm has been investigated for a system where,
though the cancellation path is not exactly a delaying system, intentional simplification
of the cancellation path model is possible. The Delayed-X LMS algorithm is advantageous
in computational time and memory requirement because of the elimination of the
convolution operation required in the conventional Filtered-X LMS method. The validity
of using the proposed algorithm has been shown for ANC of a long duct system or narrow
band noise suppression applications where erroneous modelling does not degrade the
steady state performance. To obtain the delay of the cancellation path efficiently an ADE
method has been proposed that can be used off-line or on-line. The effectiveness of the
Delayed-X LMS algorithm with ADE was demonstrated through simulations and
experiments.
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